Using a Hexagonal Mirror for Varying Light Intensity in the Measurement of Small-Angle Variation

نویسندگان

  • Meng-Chang Hsieh
  • Jiun-You Lin
  • Chia-Ou Chang
چکیده

Precision positioning and control are critical to industrial-use processing machines. In order to have components fabricated with excellent precision, the measurement of small-angle variations must be as accurate as possible. To achieve this goal, this study provides a new and simple optical mechanism by varying light intensity. A He-Ne laser beam was passed through an attenuator and into a beam splitter. The reflected light was used as an intensity reference for calibrating the measurement. The transmitted light as a test light entered the optical mechanism hexagonal mirror, the optical mechanism of which was created by us, and then it entered the power detector after four consecutive reflections inside the mirror. When the hexagonal mirror was rotated by a small angle, the laser beam was parallel shifted. Once the laser beam was shifted, the hitting area on the detector was changed; it might be partially outside the sensing zone and would cause the variation of detection intensity. This variation of light intensity can be employed to measure small-angle variations. The experimental results demonstrate the feasibility of this method. The resolution and sensitivity are 3 × 10(-40) and 4 mW/° in the angular range of 0.6°, respectively, and 9.3 × 10(-50) and 13 mW/° in the angular range of 0.25°.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-Automatic Algorithm for Estimating Cobb Angle

Background: Scoliosis is the most common type of spinal deformity. A universal and standard method for evaluating scoliosis is Cobb angle measurement, but several studies have shown that there is intra- and inter- observer variation in measuring cobb angle manually.Objective: Develop a computer- assisted system to decrease operator-dependent errors in Cobb angle measurement.Methods: The spinal ...

متن کامل

Stress intensity factor at the hole-edge cracks tips in a finite plate

In the current research work, the problem of fracture mechanics in a plate with a central hole under tensile loading is studied. The stress intensity factors are calculated for a finite plate containing two symmetrical hole-edge cracks. The problem is solved by two different methods, namely the finite element method and the FRANC software analysis. At first the finite element method is used and...

متن کامل

The mixed mode fracture mechanics in a hole plate bonded with two dissimilar plane

In the present research, the mixed-mode fracture mechanics analysis in a plate with central hole under tensile loading is considered. It is assumed that a plate containing two symmetrical hole-edge cracks is bonded with two dissimilar planes. The stress intensity factors at the crack tips are calculated. The problem is modeled in Casca software and this model is analyzed with Franc software. Th...

متن کامل

همبستگی تخلخل با زبری توسط طیف پراکندگی سطوح نانویی سیلیکان متخلخل

Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which ...

متن کامل

Stress Intensity Factor Determination in Functionally Graded Materials, Considering Continuously Varying of Material Properties

In this paper, the plates made of functionally graded material (FGM) with and without a crack are numerically simulated, employing the finite element method (FEM). The material property variations are defined to be fully continuous; therefore, the elements can be as small as required. For this purpose, variations of the material properties are applied in both the integration points and in the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016